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ABSTRACT
We consider nonlinear constrained optimization problems in which the
objective function and constraint functions are sufficiently smooth. We focus
on the programs which consist of both equality and inequality constraints, and
we prove that the global optimum value function is twice continuocusly

differentiable 1lmost everywhere with respect to the parameters.
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SIGNIFICANCE AND EXPLANATION

In the analysis of nonlinear optimization problems which arise in
engineering, management science and economic theory, it is important not to
assume that the relevant objective and constraint functions are convex. 1In
this paper we give an analysis of such problems under the assumption that
these functions are sufficiently smooth. We show that almost always one can
expect that a nonlinear program will be "well-behaved" and that the global

optimum value changes smoothly with changes in the data.

The responsibility for the wording and views expressed in tnis descriptive
summary lies with MRC, and not with the author of this report.




Morse Programs: A Topological Approach
to Smooth Constrained Optimization II

Okitsugu Fujiwara

Introduction

each "well~behaved" program.

and ineuality constraints and, in particular,

(P): minimize {f(x) subject to gix) = b}

le2< c

and its perturbation

(P(u,v)): minimize {£(x) - uTx subject to g(x) = b + v}
le2<c

family of (P), where £ e C2

and g ¢ cIH!

(S(u,v)) is of class cC2

Rn x RF (Theorem B).,

In this paper, we continue the analysis of smooth nonlinear programming
problems which we began in [4]. There we reduced the nonlinear programs to a
finite family of "well-behaved" nonlinear programs, each of which consists of
minimizing a Morse function on a manifold with boundary, by perturbing the
objective function in a linear fashion and pertrubing the right hand side of

constraints by adding a constant. We also gave the geometrical meaning of

Here we consider the nonlinear programs which consist of both equality

where f:RP > R’, g:RP > RF; c>0; uce Rn, ve R'; n> ml.

s then the global optimum value function wlu,v)

Our main
results are: in the c2 topology, Morse programs are open and dense in the

and g ¢ ™1 (Theorem A), and if f e c?

with respect to (u,v) on an open and dense set of

25182 and SOoC=-77-03277.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
is the revised version of Cowles Foundation Discussion Paper No. 539 (Yale
University) supported in part by National Science Foundation Grants ENG-78-




1. Preliminaries and Notation.

A property that holds except on a subset of R" whose Lebesgue measure is
zero is said to hold at almost every u € R?. The complement of a measure
zero set in R is said to have full measure in R".

The Jacobian matrix and the Hessian matrix of f at x are denoted by
Df(x) and sz(x) respectively.

Y

Let £:M + R® bea C Y

map from a k-dimensional C manifold M with

boundary 3M in R®. Let (¢,U) be a local parametrization of M at x

such that x = ¢(u), ue U E_Hk = {xe R,klxk > 0}. The tangent space T, M

of M at x 1is defined to be the image of D¢(u):Rk >R, a point x e M

is a regular point of £ if D(f¢)(u):Rk > R® is surjective, otherwise x

is a critical point of f . A critical point x of £f:M » R1 is

nondegenerate if the k x k matrix Dz(f¢)(u) is nonsingular. It is easily

shown that the above definitions do not depend on the choice of local .

parametrization. A point y € Ry is a regular value of f, denoted by f 4 y,

if every X € f-1(y) is a regqular point of f , otherwise y 1is a

critical value of f . f:M » R1 is a Morse function if all critical points

of f are nondegenerate.

Y Y

Let f:M+* N be a C map, A SN be a C submanifold of N . £ is

transversal to A , denoted by £ A A , if for ever x ¢ f-1(A), ImageDf(x) +

Tf(x)A = Tf(x)N holds, where Df(x):TxM + T is the derivative of f.

f(x)N

Two submanifolds A , B of M are transversal denoted by A A B , if i A
B where i:A + M is the inclusion map.
The proofs of the following tleorems, which we will use in this paper,

can be found in Gillemin and Pollack [5].




(1.1) Let f:X+ Y be a cY map such that f 4 Z for a c' submanifold

Y

2 of Y, then f-1(z) is a C submanifold of X and dimf“(Z) = dim X -

dim ¥ + dim 2 .

Y

(1.2) Let f£f: X+>Y bea C' mapof a C' manifold X with boundary

39X onto a boundaryless ¢’ manifold Y. If £ 4 2 and flax A 2 for a
boundaryless submanifold 2 of Y , then £71(z) is a c' submanifold of
X with boundary af-1(z) = f-1(z) N 3X and dim f'1(2) = dim X - dim ¥ +
dim Z.

{(1.3) Let f: X + R1 be cY map such that £ A ¢ for some c¢ € R1 .

Y

Then {x|f(x) € ¢} is a €' submanifold of X with boundary f"(c) .

(1.4) Let £:X+ Y and g: Y» Z be C' maps . Suppose g # W for a
¢’ submanifold W of Z . Then g o £A W if and only if £ A g 1(W).
(1.5) Let X,2 bLe submanifolds of Y such that X A Z. Then X n 2 is
again a submanifold of Y , dim(X n 2) = dix X + dim 2 - dim Y and

Ty (X D 2) =T7X T2 for any x e X N 2 .

{(1.6) Let £:X + R' be a c? map of a c?2 manifold X in R®. Then for

almost every u € Rn, the function f£(x) - ulx is a .Morse function on X .




2. Morse Programs: Definition and Properties.

Let us consider a program
(R): minimize {f(x) subject to g(x) € b, h(x) = c}
and a perturbation

(R(u,v,w)): minimize {f(x) - uTx subject to g(x) < b+v, h(x) = ctw}

1

where f:Rn + R, g:Rn +» R® and h:R" + RP are of class CZ. u € Rn,

v € RP, wE Rp, nsp.
Let I = {1,**+,m} and let us denote

My {xqu(x) = by, g;(x) < b, , hix) = cl

aMJ'i = {xqu(x) = b, qi(x) =b, , h(x) = cl

for all J £ I and i e I. For notational convenience we denote EJ 1= MJ i
’

if ieJ, and X, := M ,aii 1= M if 3 =¢ . Note that if

i 3,
=My

J,i

i€J, then M_ =

M . = <
- Mj,i Let X {xlqi(x) bi} and

i
axi iz {xlgi(x) = bi} for all ieI .
Definition

A program (R) is a Morse program if (R) satisfies

(M1)  g; A by, hlxifh c and hlaxi’" c forall ie I, and h4 c.

(§2) 9J|_ A bJ and ng - A b, for all nonempty J ¢ I and i ¢ J.
Xi 90X

(M3) f is a Morse function on h.1(c), ;%'i
14

and M ., for all
J,1i

’

J £ I and iel

(M4) flﬁ has no critical points on BEJ 4 for all JcI and ig¢J.
A ’ -
J.2

Remark 1 With the absence of equality or inequality constraints, the above

definition of a Morse program coincides with the one that I defined in [4].

0wl -t Baiar canmalt gt
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I e

Remark 2. ii (or X;) is a manifold with boundary Bii (or axi) by

(M1) and (1.2) (or (1.3)); and M_ ., is a manifold with boundary Bﬁj by
’

J,1 i

(M2) and (1.2).

Definition x 1is a critical point of (R) if x is a feasible point of (R)

(i.e. g(x) < b and h(x) = ¢) and x is a critical point of f|=~ where
J(x)
J(x) := {jlg,(x) = b.}.
JlgJ 5
The following results are verified in essentially the same way as Theorem

F and Theorem H in [4].

Proposition 1 If (R) is a Morse program and x is a critical point of

(R) with J := J(x), Then we have that

DgJ(X)
(a) (131+p) x n matrix | Dh(x) )  has full rank.
(b)1) there exists a unique (A,u) € R™ x RP such that

DE(x)T + Dg(x)TA + Dh(x)Tu = 0 , A\ * 0 iff ieJ.

m
(c) L(x) := DPE(x) + 1A ng.(x) + E u.D%h_(x) induces an
1 i i 7 ] j _—
isomorphism on T M 2)
2 xJ
(d) on TxﬁJ » £(x) 1is positive definite iff x is a local

minimum; negative definite iff x is a local maximum;

indefinite iff x is a saddle point of f on M_ .

J
Proposition 2. If f ¢ cz, g€ c”™ and he cn-p+1’ then for almost every

fixed (v,w) € Rm b Rp, (R(u,v,w)) is a Morse program having at most one

global solution for almost every u € rR" .

LAY >0 (A; €0) for all jeg J if x is a local minimum (maximum) (see
Luenberger [6], 10.6).

For s ¢ T_M + Wwe projec x)s orthogonally onto My » e call this

2) e et L(x) th 11y onto T We call th

linear homomorphism on T M by induced homomorphism of L(x) on T M. .
x'Jd —_— x'J

-5~
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3. Equality Constraints and One Regular Inequality Constraint: Generic

Progertx.

Let us consider a program

(B): minimize {£(x) subject to g(x) = b, Ixd° < c}

and a perturbation of (P)

(P(u,v)): minimize {f(x) - uTx subject to g(x) = btv, llxll2 < c}

#é where f£:R° + R1 and g:Rn > Rg are of class 02 i uU€E Rn, v € rR" i ¢>90
3 2 2
n?>m+l., Let h(x) := dxl°, D := {x|#xl” <

¢} and s := 3D :=

=2

é {xlllxll2 =¢c} , then hc for all ¢ >0 i.e. h is a regular
constraint.
In this section, we study a family of nonlinear programs with some

1
P equality constraints and one fixed regular constraint h(x) < ¢ (c> 0 |is

2

fixed). We will show that in C*“ topology Morse programs are open and dense

in this family (Theorem A).

Let us recall the definition of a Morse program.
(P) is a Morse program iff (P) satisfies
(MP1) glpd b, glghb
(MP2) £ is a Morse function on M := g~ '(b) n D and
M =g (b NS .
(MP3) flﬁ has no critical points on M .
Remark
(M1) corresponds to (MP1) since h & ¢ . We do not have (M2) since

we have only one inequality. (ﬂ3) corresponds to (MP2), and (ﬁ4)

corresponds to (MP3).




Lt

=

e

Firstly, by Proposition 2, we have:

Corollary 3. If f ¢ C2 and g ¢ Cn-m+1, then for almost every fixed

v € Rw, (§(u,v)) is a Morse program with a unique global solution for almost

n
every u € R .
k

Definition Let C2(D,Rk) be a set of all C2 functions from D to R for
some k » 1. c? norm topology H-Hz on C2(D,Rk) is defined by
I¢H2 := max {l¢(x)d, HDP(x)I, ﬂ02¢(x)ﬂ} for ¢ € C2(D,Rk) where sl is

xeD
the Euclidean norm (all n x k matrices are considered to be in Rnxk).

Lemma 4. If glp4a b, glgh b, Igt - gt, > 0 then gy & b,

gnls A b for sufficiently large n .
Proof. First of all we will show that if gID A b, ug“ - guz + 0 then

gnlD A b for sufficiently large n . Suppose it is not true. Then there
-1
exists x € g (b) n D such that DgP(x"™) is not of full rank for

infinitely many n's .

n,
since D is compact, there exists a subsequence {x J} of {x"} such
n,
that x I, xo for some x0 € D . However Hgn - gu2 + 0 implies
n, n,
J(x J) > Dg(xo) . Then g(xo) = b and since
n, n,
gID A b, Dg(xo) is of full rank. Hence Dg J(x J)

n, n,.

g J(x J) > g(xo) and Dg
is of full rank for
sufficiently large nj which contradicts the assumption. Similarly we can
show that (g,h) & (b,c) and #kg" - gt, > 0 imply (g",h) 4 (b,c) for
sufficiently large n . However by [4] Lemma 14(b), we have (g,h) A& (b,c)
iff gls A b hence we complete the proof. QeoE.D.
Under the same assumption of Lemma 4, by (1.2) we can claim that

L -1(b) N D is (n-m)~-dimensional manifold with boundary aﬁz 1=

g (b) n 8§ for sufficiently large 2 . Then we have

. n
- are Morse functions and if IIf - fﬂ2 + 0 , then

Lemma 5 1f fls , £l 2

M

. fnl -n are Morse functions for sufficiently large n .
M oM

-

AR i e e e e




Proof .

Let us define Fb : R? X Rw + Rp x RP and Gb : Rn X Rm X R
1

3 > R® x " x R' by, respectively,

FL(x) += (DE(x)T + Dg(x)TA, g{x) - b) ,

and

G (%A u) 2= (o£(x)T + Dg(x)™A + Dh(x)7w , g(x) - b, h(x) - c).

By the same argument as in [4] Theorem B, we have that

fl= is a Morse function iff F_| A O
M b X R™

and
f'aﬁ is a Morse function iff Gb,h 0.
Let Fi(x,k) 3= (sz(x)T + Dgl(x)TA, gz(x) - b), then le—l is a Morse '
M
function iff Fz A0 . Now we will show that if £f|= is a Morse
b m M
DxXR
4 function and IIf2 - fﬂz + 0 , then fll_z is a Morse function for
M ,
sufficiently large £ . Suppose, to the contrary, there exists {xl} such ]
: 2,8 .2 Cogon et edted)T
+ that F. (x ,A°) =0 and DF (x ,A") = ( is singular,
b b L2, &
Dg (x) 0
where
2, 4 £, 2.7.-1_ 4, L £, 2T
(3.1) A% := =(pg" (x*)ng"(x*)T) " 'Dg" (x")DE"(x")
and

m
c* iy = 2t 4 y xg ngj(xz) . :
1
Since xl e D and D is compact, there exists a converging subsequence of
2 . X E' * *
{x"} . For notational convenience, let x + x for some x € D . Since !

£
gl(xl) =b and g =~ gﬂz +0 we have g(x*) =b , and since gIDﬁ\b we

have that Dg(x’) has full rank.

-8=-




*
Moreover xz + X, Hfz - fﬂ2 + 0 and ng - gH2 + 0 , so that we have
L . * * 7 -1 * * T :
AT *» X := ~-(Dg{x )Dg(x )" ) Dg(x )Df(x ) by (3.1)., Hence, we obtain

* * * *
Fb(x ,A ) =0 and because flﬁ is a Morse function, DFb(x A ) is

A 3

» *
nonsingular. However we have DFﬁ(x A7) DFb(x A ) . Hence DFi(xl,Al)

is nonsingular for sufficiently large £ and this contradicts the choice of

{xl}. By a similar argument, we prove that if f'aﬁ is a Morse function and

if MF' - £I_+ 0, then £°| _

2 is a Morse function for sufficiently large

BMZ

2 . Q.EcDo

Lemma 6. Under the same assumptions of Lemma 5, if f'ﬁ has no critical

point on M then fnl_n has no critical point on aM®  for sufficiently
M

large n.

. =n .
Proof. Suppose it is not true, then there exists x" € M such that x" is

a critical point of fnl_n for infinitely many n's. Then there exists a i
M
unique A" ¢ "™ such that
T
pe™(x™7T + pg"(xH) A" =0 .

n, ]

Since D is compact, there exists a subsequence {x °} of {x"} such that |
n

x I » x0 for some x0 € D . Since e - fH2 + 0, "gn - gu2 + 0 and

1™ = ¢, we have Ix%1 = ¢, g(x% =b and p£(x)T + pg(xH)A% = 0

where A := A(xo) (see (3.1)). This shows x0 € 8M is a critical point of
flﬁ which contradicts our assumption. Q.E.D. %
Combining Corollary 3, Lemmas 4,5,6 we obtain é
A
Theorem A i
In tﬁe C2 topology, Morse programs are open and dense in the family of ;
programs g

minimize {£(x) subject to g(x) = b}

2
Ixll "<c

1 n-mt1
where f£:R" » R, g:iR" > R™ fec?, gecC in >kl .




4. Equality Constraints and One Regular Constraint: Sensitivity Analysis

Now we will discuss the global optimum value function

wlu,v) := minimum {£(x) - uTx subject to g(x) = b + v}

2
Ixii "<c

for (P(u,v)). The basic ideas are essentailly the same as those in Theorem E
of Fujiwara (4], where I discussed the optimum value function

©(u,v) := minimum {£(x) - u'x subject to g(x) = b + u}

n
XER

and I assumed g : Rn > Rm is proper (i.e. if Uxl + o, then lg(x)i + =),

Here we do not assume that g is a proper function, and the argument is more
delicate.
First, let us denote
- n m, = .
Z := {(u,v) € R x R |[(P(u,v)) is a Morse program}

and

ml(ﬁ(u,v)) is a Morse program }

n
= {(u,v) € R" x R with a unique global solution

. n m
Lemma 7 2 is an open set of R Xx R .,

Proof. Suppose Z is not open at (G,;) € Z « Then there exists a sequence
[} - - -
{(uz,v )} such that (uz,vl) + (u,v) and (P(ug,vz)) does not satisfy

(MP1) or (MP2) or (MP3). Suppose (E(uz,vz)) does not satisfy (MP1)
T

infinitely often. Let F(x) = £(x) - u'x, F(x) = £(x) - u* x ;
- - 2 2 [ - - .
glx) = g{x) = v, g (x) = g(x) - v . Then (u”,v’) + (u,v) implies

Hfl - }NZ + 0 and "32 - §n2 + 0 . Hence, by Lemma 4 , (S(ug,vz))

satisfies (MP1) for sufficiently large & and this contradicts the

assumption. Similarly if (E(uz,vz)) does not satisfy (MP2) (or (1P3)), then

by Lemma 5 (or Lemma 6) we have a contradiction. Therefore Z is an open set

Q+E.Ds




Proposition 8. The number of critical points of (F(u,v)) is finite for

any (u,v) € z ., and it is locally constant on the open set Z .

Proof.

. s n m m ~
Let us define F :R x R X Rn x R + Rn x Rw and G : Rn X Rm x

R' x " x ® +» B x ©® x R' by

- T T

F(x,A,u,v) := (Df(x) - u + Dg(x)"A , g(x) - b= v)
and

-~

G(x,A,v,u,v) := (Df(x)T -u+ Dg(x)TA + Dh(x)Tv r g{x) - b-=-v, h(x) -c).

- - - - -1 - - - -
Let ({(u,v) € Z and let M :=g (b+ v) nD and 9M := g 1(b + Vv) n
S. Then x is a critical point of (P(u,v)) if and only if x is a
critical point of either f(x) = uTxli or f(x) - uTxlaﬁ « By (MP3), we have

that no critical points of f(x) = GTxlﬁ are on 9dM. Therefore, x is a

critical point of (P(u,v)) if and only if x satisfies either

(4.1) F(;,X,E,;) = 0 for some A € R" and h(x) < c
or
(4.2) é(§,i,6,6,3) = 0 for some X e Rm and Vv > 0.

By (MP2) f(x) - aTx is a Morse function on M and on M , hence critical

points of f(x) - GTxlﬁ and critical points of f£(x) - GTxlaﬁ are

isolated. Since M and dM are compact, the number of critical points of

(P(u,v)) is finite. Let §1,--°,§k be distinct critical points of

- -k+ ~k+ . .
f(x) - uTxlﬁ and let xk 1,°°-,x'< . be distinct critical points of

=k+1 =k+£
x '}

f(x) - GTxI .« Then we have that {§1,"-,§k} n {x 100, = ¢ and

oM
the number of critical points of (E(G,C)) is k+f . Let X’,---Xk be the

=k+1 =k+1
Y

-1 -
associated Lagrange multipliers of x ,°°'xk. Let (A Yyooe,

- -k+ .l -k+ -k+
(Ak”’,vk l) be the associated Lagrange multipliers of xk 1,--°,xk 2.




By (MP2) we have that F -,] A 0 and G,- = A

(u,v Dme (u,v) SmexR1

0, where F (x,A) = F(x,A,u,v) and G {(x,A/V) = G(x,A,V,u,v) (see

(u,v) (u,v)

the beginning of the proof of Lemma 5). In particular, therefore we have that

-

DF (il,il) and DG(; ;)(;J,XJ,;j) are nonsingular for i = 1,¢¢¢ ,k and
,

(u,v)
for j = k+1,e+¢ k+2. Hence, by the implicit function theorem (Edwards [1],
p. 417), there exist neighborhoods U (u), viv), X (x), A*(3*), ana c!

functions xl(-,') and Xl(v,-) from Gl x V1 to, respectively,

x* and A* such that xl(ﬁ,;) = x* R kl(a.;) =t
=i
(4.3) X< p-8§,
and
(4.4) F(x,A,u,v) = 0 <=> x = x' (u,v), A = A" (u,v) on X x KA* x G x ¥*

for i = 1,e¢¢,k; and there exist neighborhoods ﬁj(ﬁ), Gj(;), ij(Ej),Kj(Xj),
8 (53) and ¢! functions x3(s,*), AJ(e, o), vI(e,e) from T3 x ¥ to,
respectively, ij, Kj, %) such that xj(ﬁ,;) = §j, xj(G,G) = Xj, vj(ﬁ,;) =)
and
(4.5) G(x,A,v,u,¥) = 0 <==> (x,A,v) = (x)(w,v), A(u,v), viiu,v))

on %I x K3 x 83 x 5 x ¥
for j = k#+1,°°¢ , k+8 .

Since Z is open {Lemma 7), we can choose ﬁ(ﬁ) and G(;) such that
k+L -1 k+L

Uc n G, Ve n V', andUxV cZ, and such that x(0,V),ee-,
i=1 i=1

k+8 = = . . . .
x E(U,V) are pairwise disjoint. WNow (4.1) - (4.5) imply that the number of

critical points of (5(3,;)) is no less that k + £ for (u,v)
- - 1 k+4 . s .
€ U x V, because x (u,v), *¢¢,x {(u,v) are distinct critical points of
(s(u,v)) for (u,v) e UxV . We claim that, in actual fact, it is exactly
k + &, Suppose, to the contrary, there exists {(ua,va)} such that

(ua,vu) € Ux ¥, (ua,va) + (u,v) and the number of critical points of

-12=




(B(u“,v“)) is greater than k + £. Firstly, assume that there exist

infinitely many {(x",A%)} such that ¢ {x‘(ua,va),--',xk(uc,va)}, ]

F(x* A%,0%,v*) =0, and h(x*) < c. sSince {x*} ¢ M and M is compact,

there exists a converging subsequence of {x“}. For notational convenience,

* -
E M. Since

1

[+3 *
let us denote X * x for some x

o

@ pg(x*) (DE(x®)T = u*)

A% := A(x™) = (Dg(x*)Dg(x®HT)”

- * *
and uc + u , we obtain A ¥ := A(x ) « Then we have (xa,xa,ua,vu)

* R a - ~ AR W -
+ (x ,» +u,v), hence by the continuity of F , F(x ,A ,u,v) = 0.

-

Note that h(x*) < ¢, because if h(x‘) = ¢ , then we obtain
é(x*,x*,o,G,C) = 0 and this implies that x* is a critical point of
f(x) - GTxlaﬁ with v = 0 , which contradicts the fact that (G,;) €Z.
Therefore x* is a critical point of f£f(x) - GTxli , and hence (x*,A')
= (;i,ii) for some i = 1,¢*++,k. But this contradicts (4.4), because then
for sufficiently large o , we have that

- - - - |
%% v e X x R x ot x ¥

s a
F(xa,k ,uu,vu) =0

and x* ¢ {x1(ua,va),"°:xk(ualva)} .

Similarly if we assume that there exist infinitely many {(xa,ka,va)}

+ +
k: 1(ua a xk Z(Ua a)} a. . a a._ a

such that x* ¢ {x V)00, v and G(x% A% V%05V = o0,

then we can arrive at a contradiction. Hence, the number of critical points

of (E(u,v)) is k+2 in a small neighborhood of (E,;). Qe«EJD.
=1 n m
Corollary 9. Z is an open set of R x R &

m+1

If f e C2 and g € c™ , then by Corollary 3, Z and El are dense

n m
sets of R x R, hence we obtain




Theoxrem B. 1f f ¢ cz and g € cn-m+1‘ then the global optimum value

function w(u,v) for (P(u,v)) _is of class c? with respect to (u,v) on

the open and dense set il of R™ x Rm.

Proof. Using the same notation as in Proposition 8, we have
23V = min {063V - (L)) .
1<ick+2
- - - i = = P { = =
Hence w(u,v) = f(x (u,v)) - u x (u,v) for some i . It is easily shown

({see, for example, Luenberger (6], 10.5), that 1

Da(a,v) = - (x 3,9, Atu,v)

e - - ox* (3, v)
Dw(u,v) = - ( i - - .
DA (u,V)
Therefore w is in 02 » The rest of the proof is derived by Lemma 7, 1
Proposition 8, and Corollary 9. QeE.D.
Remark

The differentiability of the local optimum value function was given by
Fiacco/McCormick {2) and Fiacco [3], using the implicit function theorem. Our

result presented here is not for the local, but the global optimum value

function. (See also [4] Proposition 6, and Theorem E).
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5. Fixed and Variable Constraints.

As a natural extension of Section 3, we consider a smooth nonlinear
program defined by a set of variable constraints (which we are allowed to
perturb) and fixed constraints (which we are not allowed to perturb). Namely
we consider a program
(S): minimize {f(x) subject to g(x) € b, h(x) = ¢}

G(x)<0
H(x)=0

RETPr

and a perturbation of (S)

(S(u,v,w)): minimize {f(x) - uTx subject to g(x) € b+v, h(x) = c+w}
G(x)<0
H(x)=0
where f,g,h,G,H are of class C° from R" respectively to R', R®, RP, RF,
R®; ueRr’, veRr" we RP.
We impose a condition (c0) to G and H
(c0) (G, H) 4 (0 ,0) for every a c{1,2,000,r}.

For example, if we take Gk(x) = =Xy for k = 1, **+,n, then G satisfies

(c0), and (S, becomes

minimize {f(x) subject to g(x) € b, h(x) = c}.
x 2 0

) -5+ 1 ;
Moreover, if G ¢ Cn, He c™ 8 . then we can assume that, generically,

(c0) 1is satisfied (cf. (4], Lemma 11).

Spingarn ((7],({8},(9])) considered a more general fixed constraint set,
named "cyrtohedron"” which contains degenerate points and he showed that the
problem is reduced to solving at most a countable number of programs of type
(s} ([9), (3.7)). 1In our framework, we consider a program (S) and we impose
the condition (c0) on G and H so that we do not have degenerate
points. The basic idea is the same as that shown in (4] Theorem H; namely, we

perturb the right hand side so that the feasible region becomes a union of a

-15=




finite family of manifolds with boundary. We then perturb the objective

function so that it becomes a Morse function on each manifold and it has no

Then,

critical points on the boundary (hence strict complementarity holds).

we derive the necessary conditions for the optimality of this type of problem,

which is a special case of Spingarn ([9],(3.9)).

Let N := {xIGa(x) = 0, H(x) = 0} for a c {1,°¢°,r}, then N, is a

manifold of dimension n - |a|l - 8 by (c0) and (1.1). Let us consider all

(b,c) € R x R that satisfy the following conditions (c1)=(c3);

(ct): (gy,h) A (by,c) for all J ¢ {1,000,m} )
{
(c2): (gJ'h)lNa A (§J,c) for all J and a .
(c3) qi'_ & bi for all J, a, and i ¢ J,
MJﬂN“

where A

1
then the set of all (b,c) satisfying

MJ 1= {ngJ(x) =b_, hix) = ¢} .
Note that if ge C?, heC

n-p+

by Sard's theorem and Fubini's

’ (cl) = (¢3) has full measure in R x rP

) theorem (cf. [4], Lemma 11). By (c1) and (1.1), iJ is (n - |J| - p)-

(1.1},

J ; by (c2), (1.4), and (1.5), M_ n N

dimensional manifold for all J

is (n - |J] - p- la)] - s)~dimensional manifold; by (c3) and (1.2),

- -1
MJ n Na ng:L (==,b

1] is (n~ |J] = p - |a|] - 8) -dimensional manifold with

boundary ﬁJ rnNa n gI‘(bi). Then by (1.6), for almost every u ¢ Rn,
f(x) - uTxli N is a Morse function for all J and a . By (4]
Jd a
n T
Proposition 13, for almost every u e R, f(x) - u XI!J”NQ”9;1('°'bi] has no

-1 .
n Na n gy (bi) for all J, a, and i ¢ J . i

critical points on M

J

Now, let us fix ue R and (b+ v, c + w) € R® x R® satisfying the

»
above conditions. Let x € Rn be a feasible point of (S(u,v,w)) and a

L ]
critical point of f(x) = uTxk;, , where J = {i|g . (x ) =Db, + v },
JnMa i i i

a = {lek(x') = 0} and 53 = {xqu(x) = b, + Vi h(x) = ¢ + w}. Then by




(c2), (1.1), (1.4) and (1.5), we have Txt(qs n Na) = Txﬁgé n Tx'N“ and

- [} * * *
] = .
T .(MJ n Na) Ker DgJ(x ) n Ker Dh(x ) n Ker DGa(x ) n Ker DH(x )

x r

L ] m * *
Hence, by [4] Lemma 1, there exist unique A € R , u € RP, £ € R and

* 8
n € R, such that .

*
pe(x)T = u + pgx )" + oaex )Tt = —oexHTET +nx )T e T N,
X

where JC = {1, ¢ee,m} - J and o = {1,***,r} - a . Moreover, using the same t

argument as that of the proof of [4] Theorem G, we have

*
Xi #0 iff ie J .

Hence, we obtain a special case of Spingarn ((9],(3.9)),

Proposition 10

-p+
Suppose g € c" and h an P 1. Then for almost every fixed (v,w) €

R x Rp, (S(u,v,w)) has the following properties for almost every u € r".

If x is a feasible point of (S(u,v,w)) and a critical point of f(x) -

T -| i = =
u'x on My n N where J = {1Igi(x) b, + vi}, a = {kIGk(x) 0},
- -1 -1 -1 -1
. - =
MJ QJ (b+ v)nh (c + w), Na Ga (Oa) nH (0), then

(a) (DgJ(x)T. Dh(x)T, DGa(x)T, DH(x)T) has full ranke.

(b) there exist unique X € Rm, (TR Rp, £ ¢ Rr, n e R® such that

oex)T - u + pg(x)T A + bh(x)Tu = ~(0a(x)Te + pH(x)Tn) € TN

A, # 0 iff i€ J;

i k" 0 for k¥ a .

()  Lx) = D20 + § A.0% (x) + § wpPh (0 + T € p%6 (x)
L AP9y RE I .

+3n o (x) induces an igomorphism on T M' n N ).
< A x J a




e,

b

(d) on T (M} nN ), L(x) is positive definite if x is a local

minimum; negative definite if x is a local maximum, indefinite

iff x is a saddle point on ﬁ& n Na .
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